
Orthogonal Matching Pursuit
and K-SVD for Sparse Encoding

Manny Ko
Senior Software Engineer, Imaginations Technologies

Robin Green
SSDE, Microsoft Xbox ATG

Outline

● Signal Representation

● Orthonormal Bases vs. Frames

● Dictionaries

● The Sparse Signal Model

● Matching Pursuit

● Implementing Orthonomal Matching Pursuit

● Learned Dictionaries and KSVD

● Image Processing with Learned Dictionaries

● OMP for GPUs

Representing Signals

● We represent most signals as linear combinations of things
we already know, called a projection

× 𝛼1 +

× 𝛼2 +

× 𝛼3 +⋯

=

× 𝛼0 +

Representing Signals

● Each function we used is a basis and the scalar weights are
coefficients

● The reconstruction is an approximation to the original 𝑥
● We can measure and control the error 𝑥 − 𝑥 2

𝑥 𝑡 = 𝑏𝑖 𝑡 𝛼𝑖

𝑁

𝑖=0

Orthonormal Bases (ONBs)

● The simplest way to represent signals is using a set of
orthonormal bases

 𝑏𝑖 𝑡 𝑏𝑗(𝑡)

+∞

−∞

𝑑𝑡 =
 0 𝑖 ≠ 𝑗
 1 𝑖 = 𝑗

Example ONBs

● Fourier Basis

𝑏𝑘 𝑡 = 𝑒𝑖2𝑝𝑘𝑡

● Wavelets

𝑏𝑚,𝑛 𝑡 = 𝑎−𝑚 2 𝑥 𝑎−𝑚𝑡 − 𝑏𝑚

● Gabor Functions

𝑏𝑘,𝑛 𝑡 = 𝜔 𝑡 − 𝑏𝑛 𝑒𝑖2𝑝𝑘𝑡

● Contourlet

𝑏𝑗,𝑘,𝐧 𝑡 = λ𝑗,𝑘 𝑡 − 2𝑗−1𝐒𝑘n

Benefits of ONB

● Analytic formulations

● Well understood mathematical properties

● Fast algorithms for projection

Limitations

● Orthonormal bases are optimal only for specific synthetic
signals
● If your signal looks exactly like your basis, you only need one

coefficient

● Limited expressiveness, all signals behave the same

● Real world signals often take a lot of coefficients
● Just truncate the series, which leads to artifacts like aliasing

Smooth vs. Sharp

Haar Wavelet Basis

● Sharp edges

● Local support

Discrete Cosine Transform

● Smooth signals

● Global support

Overcomplete Bases

● Frames are overcomplete bases
● There is now more than one way to represent a signal

● By relaxing the ONB rules on minimal span, we can better
approximate signals using more coefficients

Φ = 𝑒1|𝑒2|𝑒3

=
1 0 1
0 1 −1

Φ = 𝑒 1| 𝑒 2|𝑒 3

=
2 −1 −1
0 1 0

Dictionaries

● A dictionary is an overcomplete basis made of atoms

● A signal is represented using a linear combination of only a
few atoms

● Atoms work best when zero-mean and normalized

 𝑑𝑖
𝑖∈𝐼

𝛼𝑖 = 𝑥

𝑫𝛼 = 𝑥

Dictionaries

𝐃
α

=

𝑥

Mixed Dictionaries

● A dictionary of Haar + DCT gives the best of both worlds

But now how do we pick which coefficients to use?

The Sparse Signal Model

𝐃
A fixed dictionary

𝛼

=

𝑥

𝑁 𝑁

𝐾

resulting
signal

Sparse
vector of

coefficients

The Sparse Signal Model

It’s Simple
● Every result is built from a combination of a few atoms

It’s Rich
● It’s a general model, signals are a union of many low dimensional parts

It’s Used Everywhere
● The same model is used for years in Wavelets, JPEG compression,

anything where we’ve been throwing away coefficients

Solving for Sparsity

What is the minimum number of coefficients we can use?

1. Sparsity Constrained

keep adding atoms until we reach a maximum count

2. Error Constrained
Keep adding atoms until we reach a certain accuracy

𝛼 = argmin
𝛼

𝛼 0 s. t. 𝐃𝛼 − 𝑥 2
2 ≤ 𝜖

𝛼 = argmin
𝛼

 𝐃𝛼 − 𝑥 2
2 s. t. 𝛼 0 ≤ 𝐾

Naïve Sparse Methods

● We can directly find 𝛼 using Least Squares

● Given K=1000 and L=10 at one LS per nanosecond this
would complete in ~8 million years.

1. set 𝐿 = 1

2. generate 𝑆 = { 𝒫𝐿 𝑫 }

3. for each set solve the Least Squares problem min
𝛼

𝐃𝛼 − 𝑥 2
2

where 𝑠𝑢𝑝𝑝 𝛼 ∈ 𝑆𝑖

4. if LS error ≤ 𝜖 finish!

5. set 𝐿 = 𝐿 + 1

6. goto 2

Matching Pursuit

1. Set the residual 𝑟 = 𝑥

2. Find an unselected atom
that best matches the
residual 𝐃𝛼 − 𝑟

3. Re-calculate the residual
from matched atoms
𝑟 = 𝑥 − 𝐃𝛼

4. Repeat until 𝑟 ≤ 𝜖

Greedy Methods

𝐃
𝛼

=

𝑥

Problems with Matching Pursuit (MP)

● If the dictionary contains atoms that are very similar, they
tend to match the residual over and over

● Similar atoms do not help the basis span the space of
representable values quickly, wasting coefficients in a
sparsity constrained solution

● Similar atoms may match strongly but will not have a large
effect in reducing the absolute error in an error constrained
solution

Orthogonal Matching Pursuit (OMP)

● Add an Orthogonal Projection to the residual calculation

1. set 𝐼 ∶= ∅ , 𝑟 ≔ 𝑥, 𝛾 ≔ 0

2. while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑓𝑎𝑙𝑠𝑒) do

3. 𝑘 ≔ argmax
𝑘

𝑑𝑘
𝑇𝑟

4. 𝐼 ≔ 𝐼, 𝑘

5. 𝛾𝐼 ≔ 𝐃𝐼
+𝑥

6. 𝑟 ≔ 𝑥 − 𝐃𝐼𝛾𝐼

7. end while

Uniqueness and Stability

● OMP has guaranteed reconstruction (provided the
dictionary is overcomplete)

● By projecting the input into the range-space of the atoms,
we know that that the residual will be orthogonal to the
selected atoms

● Unlike Matching Pursuit (MP) that atom, and all similar
ones, will not be reselected so more of the space is
spanned per iteration

Orthogonal Projection

● If the dictionary 𝐃 was square, we could use an inverse

● Instead we use the Pseudo-inverse 𝐃+ = 𝐃𝑇𝐃 −1𝐃𝑇

𝐃+

×
=

−1

𝐃𝑇 𝐃𝑇 𝐃𝑇
𝑖𝑛𝑣 × 𝐃

=

Pseudoinverse is Fragile

● In floating point, the expression 𝐃T𝐃
−1

 is notoriously

numerically troublesome – the classic FP example

● Picture mapping all the points on a sphere using 𝐃𝑇𝐃 then inverting

Implementing the Pseudoinverse

● To avoid this, and reduce the cost of inversion, we can note that
𝐃T𝐃 is always symmetric and positive definite

● We can break the matrix into two triangular matrices using Cholesky

Decomposition 𝐀 = 𝐋𝐋𝑇

● Incremental Cholesky Decomp reuses the results of the previous
iteration, adding a single new row and column each time

𝐋𝑛𝑒𝑤 =

𝐋 0

𝑤𝑇 1 − 𝑤𝑇𝑤
 where 𝑤 = 𝐋−1𝐷𝐼𝑑𝑘

OMP-Cholesky 1. set 𝐼 ∶= ∅ , 𝐿 ≔ 1 , 𝑟 ≔ 𝑥, 𝛾 ≔ 0,
 𝛼 ≔ 𝐃𝑇𝑥, 𝑛 ≔ 1

2. while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑓𝑎𝑙𝑠𝑒) do

3. 𝑘 ≔ argmax
𝑘

𝑑𝑘
𝑇𝑟

4. if 𝑛 > 1 then
 𝑤 ≔ Solve for 𝑤 𝐋𝑤 = 𝐃𝐼

𝑇𝑑𝑘

 𝐋 ≔
𝐋 𝟎

𝑤𝑇 1 − 𝑤𝑇𝑤

5. 𝐼 ≔ 𝐼, 𝑘

6. 𝛾𝐼 ≔ Solve for 𝑐 𝐋𝐋𝑇𝑐 = 𝛼𝐼

7. 𝑟 ≔ 𝑥 − 𝐃𝐼𝛾𝐼

8. 𝑛 ≔ 𝑛 + 1

9. end while

OMP compression of Barbara

 2 atoms 3 atoms 4 atoms

Batch OMP (BOMP)

● By pre-computing matrices, Batch OMP can speed up OMP
on large numbers (>1000) of inputs against one dictionary

● To avoid computing 𝐃𝑇𝑟 at each iteration

● Precompute 𝐃𝑇𝑥 and the Gram-matrix 𝐆 = 𝐃𝑇𝐃

𝐃𝑇𝑟 = 𝐃𝑇(𝑥 − 𝐃𝐼(𝐃𝐈)
+𝑥)

 = 𝐃𝑇𝑥 − 𝐆𝐼(𝐃𝐼)
+𝑥

 = 𝐃𝑇𝑥 − 𝐆𝐼(𝐃𝐼
𝑇𝐃𝐼)

−1𝐃𝐼
𝑇𝑥

 = 𝐃𝑇𝑥 − 𝐆𝐼(𝐆𝐼,𝐼)
−1𝐃𝐼

𝑇𝑥

Learned Dictionaries and K-SVD

● OMP works well for a fixed dictionary, but it would work
better if we could optimize the dictionary to fit the data

 𝐃 ≈ ⋯ 𝐗
⋯ 𝐀

Sourcing Enough Data

● For training you will need a large number of samples
compared to the size of the dictionary.

● Take blocks from all integer offsets on the pixel grid

𝑥 = …

1. Sparse Encode

● Sparse encode all entries
in 𝐱. Collect these sparse
vectors into a square
array 𝐀

𝐃

𝐀T

𝐗T

⋯

⋯

2. Dictionary Update

● Find all 𝐗 that use atom in
column 𝒅𝑘

⋯

⋯

2. Dictionary Update

● Find all 𝐗 that use atom in
column 𝑑𝑘

● Calculate the error without 𝑑𝑘

by 𝐄 = 𝐗𝐼 − 𝑑𝑖𝐀𝐢𝑖≠𝑘

● Solve the LS problem:

● Update 𝑑𝑖 with the new 𝑑
and 𝐀 with the new 𝑎

𝑑, 𝑎 = Argmin
𝑑,𝑎

𝐄 − 𝑑𝑎𝑇 𝐹
2 𝑠. 𝑡. 𝑑 2 = 1

𝑎

Atoms after K-SVD Update

How many iterations of update?

200000

250000

300000

350000

400000

450000

500000

550000

600000

0 10 20 30 40 50 60 70

Batch OMP

K-SVD

Sparse Image Compression

● As we have seen, we can control the number of atoms
used per block

● We can also specify the exact size of the dictionary and
optimize it for each data source

● The resulting coefficient stream can be coded using a
Predictive Coder like Huffman or Arithmetic coding

Domain Specific Compression

● Using just 550 bytes
per image

1. Original

2. JPEG

3. JPEG2000

4. PCA

5. KSVD per block

Sparse Denoising

● Uniform noise is incompressible and OMP will reject it

● KSVD can train a denoising dictionary from noisy image blocks

Source Result 30.829dB Noisy image

20

Sparse Inpainting

● Missing values in 𝐱 means missing rows in 𝐃

● Remove these rows and refit α to recover 𝐱
● If 𝛼 was sparse enough, the recovery will be perfect

=

Sparse Inpainting

 Original 80% missing Result

Super Resolution

Super Resolution

The Original Bicubic Interpolation SR result

Block compression of Voxel grids

● “A Compression Domain output-sensitive volume rendering architecture
based on sparse representation of voxel blocks” Gobbetti, Guitian and
Marton [2012]

● COVRA sparsely represents each voxel block as a dictionary of 8x8x8
blocks and three coefficients

● The voxel patch is reconstructed only inside the GPU shader so voxels are
decompressed just-in-time

● Huge bandwidth improvements, larger models and faster rendering

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2012:CCO'

Thank you to:

● Ron Rubstein & Michael Elad

● Marc LeBrun

● Enrico Gobbetti

