
Orthogonal Matching Pursuit 
and K-SVD for Sparse Encoding 
 
Manny Ko 
Senior Software Engineer, Imaginations Technologies 

Robin Green 
SSDE, Microsoft Xbox ATG 

 
 



Outline 

● Signal Representation 

● Orthonormal Bases vs. Frames 

● Dictionaries 

● The Sparse Signal Model 

● Matching Pursuit 

● Implementing Orthonomal Matching Pursuit 

● Learned Dictionaries and KSVD 

● Image Processing with Learned Dictionaries 

● OMP for GPUs 

 

 

 

 



Representing Signals 

● We represent most signals as linear combinations of things 
we already know, called a projection 

× 𝛼1 +  

× 𝛼2 + 

× 𝛼3 +⋯ 

= 

× 𝛼0 +  



Representing Signals 

● Each function we used is a basis and the scalar weights are 
coefficients 

 

 

 

 

 

● The reconstruction is an approximation to the original 𝑥 
● We can measure and control the error 𝑥 − 𝑥 2 

𝑥 𝑡 =   𝑏𝑖 𝑡 𝛼𝑖

𝑁

𝑖=0

 



Orthonormal Bases (ONBs) 

● The simplest way to represent signals is using a set of 
orthonormal bases  

 

 

 

 

 

 

 𝑏𝑖 𝑡 𝑏𝑗(𝑡)

+∞

−∞

𝑑𝑡 =  
 0    𝑖 ≠ 𝑗
 1    𝑖 = 𝑗

 



Example ONBs 

● Fourier Basis 

𝑏𝑘 𝑡 = 𝑒𝑖2𝑝𝑘𝑡 

 

 

 

● Wavelets 

𝑏𝑚,𝑛 𝑡 = 𝑎−𝑚 2 𝑥 𝑎−𝑚𝑡 − 𝑏𝑚  

 

● Gabor Functions 

𝑏𝑘,𝑛 𝑡 = 𝜔 𝑡 − 𝑏𝑛 𝑒𝑖2𝑝𝑘𝑡 

 

 

 

● Contourlet 

𝑏𝑗,𝑘,𝐧 𝑡 = λ𝑗,𝑘 𝑡 − 2𝑗−1𝐒𝑘n  

 



Benefits of ONB 

● Analytic formulations 
 

● Well understood mathematical properties 

 

● Fast algorithms for projection 

 



Limitations 

● Orthonormal bases are optimal only for specific synthetic 
signals 
● If your signal looks exactly like your basis, you only need one 

coefficient 

 

● Limited expressiveness, all signals behave the same 

 

● Real world signals often take a lot of coefficients 
● Just truncate the series, which leads to artifacts like aliasing 



Smooth vs. Sharp 

Haar Wavelet Basis 

● Sharp edges 

● Local support 

Discrete Cosine Transform 

● Smooth signals 

● Global support 



Overcomplete Bases 

● Frames are overcomplete bases 
● There is now more than one way to represent a signal 

 

 

 

 

 

 

● By relaxing the ONB rules on minimal span, we can better 
approximate signals using more coefficients 

Φ = 𝑒1|𝑒2|𝑒3  
 

=
1 0 1
0 1 −1

 

Φ = 𝑒 1| 𝑒 2|𝑒 3  
 

=
2 −1 −1
0 1 0

 



Dictionaries 

● A dictionary is an overcomplete basis made of atoms 

● A signal is represented using a linear combination of only a 
few atoms 
 
 
 
 
 

 

● Atoms work best when zero-mean and normalized 

 𝑑𝑖
𝑖∈𝐼

𝛼𝑖 = 𝑥 

𝑫𝛼 = 𝑥 



Dictionaries 

𝐃 
α 

 

= 

𝑥 



Mixed Dictionaries 

● A dictionary of Haar + DCT gives the best of both worlds 
 
 
 
 
 
 
 
 
 
But now how do we pick which coefficients to use? 



The Sparse Signal Model 

𝐃 
A fixed dictionary 

𝛼 
 

= 

𝑥 

𝑁 𝑁 

𝐾 

resulting 
signal 

Sparse 
vector of 

coefficients 



The Sparse Signal Model 

It’s Simple 
● Every result is built from a combination of a few atoms 

 

It’s Rich 
● It’s a general model, signals are a union of many low dimensional parts 

 

It’s Used Everywhere 
● The same model is used for years in Wavelets, JPEG compression, 

anything where we’ve been throwing away coefficients 



Solving for Sparsity 

What is the minimum number of coefficients we can use? 

 
1. Sparsity Constrained 

keep adding atoms until we reach a maximum count 

 

 

 

2. Error Constrained 
Keep adding atoms until we reach a certain accuracy 
 

 

 

𝛼 = argmin 
𝛼

𝛼 0     s. t.    𝐃𝛼 − 𝑥 2
2 ≤ 𝜖 

𝛼 = argmin
𝛼

 𝐃𝛼 − 𝑥 2
2    s. t.    𝛼 0 ≤ 𝐾 



Naïve Sparse Methods 

● We can directly find 𝛼 using Least Squares 

 

 

 

 

 

 

 

● Given K=1000 and L=10 at one LS per nanosecond this 
would complete in ~8 million years. 

1. set 𝐿 =  1 

2. generate 𝑆 = {  𝒫𝐿 𝑫  } 

3. for each set solve the Least Squares problem  min
𝛼

𝐃𝛼 − 𝑥 2
2 

where 𝑠𝑢𝑝𝑝 𝛼 ∈ 𝑆𝑖 

4. if LS error ≤ 𝜖 finish! 

5. set 𝐿 = 𝐿 + 1 

6. goto 2 



Matching Pursuit 

1. Set the residual 𝑟 = 𝑥 

2. Find an unselected atom 
that best matches the 
residual 𝐃𝛼 − 𝑟  

3. Re-calculate the residual 
from matched atoms 
𝑟 = 𝑥 − 𝐃𝛼 

4. Repeat until 𝑟 ≤ 𝜖 

Greedy Methods 

𝐃 
𝛼 

 

= 

𝑥 



Problems with Matching Pursuit (MP) 

● If the dictionary contains atoms that are very similar, they 
tend to match the residual over and over 

 

● Similar atoms do not help the basis span the space of 
representable values quickly, wasting coefficients in a 
sparsity constrained solution 

 

● Similar atoms may match strongly but will not have a large 
effect in reducing the absolute error in an error constrained 
solution 

 

 



Orthogonal Matching Pursuit (OMP) 

● Add an Orthogonal Projection to the residual calculation 

1. set 𝐼 ∶=  ∅ , 𝑟 ≔ 𝑥, 𝛾 ≔ 0  

2. while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑓𝑎𝑙𝑠𝑒) do 

3.    𝑘 ≔ argmax
𝑘

𝑑𝑘
𝑇𝑟  

4.    𝐼 ≔ 𝐼, 𝑘  

5.    𝛾𝐼 ≔ 𝐃𝐼
+𝑥 

6.    𝑟 ≔ 𝑥 − 𝐃𝐼𝛾𝐼 

7. end while 



Uniqueness and Stability 

● OMP has guaranteed reconstruction (provided the 
dictionary is overcomplete) 

 

● By projecting the input into the range-space of the atoms, 
we know that that the residual will be orthogonal to the 
selected atoms 

 

● Unlike Matching Pursuit (MP) that atom, and all similar 
ones, will not be reselected so more of the space is 
spanned per iteration 

 



Orthogonal Projection 

● If the dictionary 𝐃 was square, we could use an inverse 

● Instead we use the Pseudo-inverse 𝐃+ = 𝐃𝑇𝐃 −1𝐃𝑇 

 

𝐃+ 

× 
= 

−1 

𝐃𝑇 𝐃𝑇 𝐃𝑇 
𝑖𝑛𝑣 × 𝐃 

= 



Pseudoinverse is Fragile 

● In floating point, the expression 𝐃T𝐃
−1

 is notoriously 

numerically troublesome – the classic FP example 
 

● Picture mapping all the points on a sphere using 𝐃𝑇𝐃 then inverting 



Implementing the Pseudoinverse 

● To avoid this, and reduce the cost of inversion, we can note that 
𝐃T𝐃 is always symmetric and positive definite 

 

● We can break the matrix into two triangular matrices using Cholesky 

Decomposition 𝐀 = 𝐋𝐋𝑇 
 

● Incremental Cholesky Decomp reuses the results of the previous 
iteration, adding a single new row and column each time 

𝐋𝑛𝑒𝑤 =

𝐋 0

𝑤𝑇 1 − 𝑤𝑇𝑤
     where      𝑤 = 𝐋−1𝐷𝐼𝑑𝑘 



OMP-Cholesky 1. set 𝐼 ∶=  ∅ , 𝐿 ≔ 1 , 𝑟 ≔ 𝑥, 𝛾 ≔ 0,  
     𝛼 ≔ 𝐃𝑇𝑥, 𝑛 ≔ 1 

2. while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑓𝑎𝑙𝑠𝑒) do 

3.    𝑘 ≔ argmax
𝑘

𝑑𝑘
𝑇𝑟  

4.    if 𝑛 > 1 then 
      𝑤 ≔ Solve for 𝑤  𝐋𝑤 = 𝐃𝐼

𝑇𝑑𝑘  

           𝐋 ≔  
𝐋 𝟎

𝑤𝑇 1 − 𝑤𝑇𝑤
 

5.    𝐼 ≔ 𝐼, 𝑘  

6.    𝛾𝐼 ≔ Solve for 𝑐   𝐋𝐋𝑇𝑐 = 𝛼𝐼  

7.    𝑟 ≔ 𝑥 − 𝐃𝐼𝛾𝐼  

8.      𝑛 ≔ 𝑛 + 1 

9. end while 



OMP compression of Barbara 

   2 atoms                      3 atoms                        4 atoms 









Batch OMP (BOMP) 

● By pre-computing matrices, Batch OMP can speed up OMP 
on large numbers (>1000) of inputs against one dictionary 

● To avoid computing 𝐃𝑇𝑟 at each iteration  

 

 

 

 

 

● Precompute 𝐃𝑇𝑥 and the Gram-matrix 𝐆 = 𝐃𝑇𝐃 

𝐃𝑇𝑟 =  𝐃𝑇(𝑥  −  𝐃𝐼(𝐃𝐈)
+𝑥) 

        =  𝐃𝑇𝑥  − 𝐆𝐼(𝐃𝐼)
+𝑥  

       =  𝐃𝑇𝑥  − 𝐆𝐼(𝐃𝐼
𝑇𝐃𝐼)

−1𝐃𝐼
𝑇𝑥 

      =  𝐃𝑇𝑥  − 𝐆𝐼(𝐆𝐼,𝐼)
−1𝐃𝐼

𝑇𝑥 



Learned Dictionaries and K-SVD 

● OMP works well for a fixed dictionary, but it would work 
better if we could optimize the dictionary to fit the data 

 

 

 𝐃 ≈ ⋯ 𝐗 
⋯ 𝐀 

 



Sourcing Enough Data 

● For training you will need a large number of samples 
compared to the size of the dictionary. 

● Take blocks from all integer offsets on the pixel grid 

𝑥 = … 



1. Sparse Encode 

● Sparse encode all entries 
in 𝐱. Collect these sparse 
vectors into a square 
array 𝐀 

𝐃 

𝐀T 
 

𝐗T 

⋯
 

⋯
 



2. Dictionary Update 

● Find all 𝐗 that use atom in 
column 𝒅𝑘 

 

⋯
 

⋯
 



2. Dictionary Update 

● Find all 𝐗 that use atom in 
column 𝑑𝑘 

 

● Calculate the error without 𝑑𝑘 

by 𝐄 = 𝐗𝐼 −  𝑑𝑖𝐀𝐢𝑖≠𝑘  

 

● Solve the LS problem: 

 

 

● Update 𝑑𝑖 with the new 𝑑 
and 𝐀 with the new 𝑎 

 

 

𝑑, 𝑎 =  Argmin
𝑑,𝑎

𝐄 − 𝑑𝑎𝑇 𝐹
2      𝑠. 𝑡.    𝑑 2 = 1 

𝑎 



Atoms after K-SVD Update 



How many iterations of update? 
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450000
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550000

600000
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Batch OMP

K-SVD



Sparse Image Compression 

● As we have seen, we can control the number of atoms 
used per block 

 

● We can also specify the exact size of the dictionary and 
optimize it for each data source 

 

● The resulting coefficient stream can be coded using a 
Predictive Coder like Huffman or Arithmetic coding 





Domain Specific Compression 

● Using just 550 bytes 
per image 

 

1. Original 

2. JPEG 

3. JPEG2000 

4. PCA 

5. KSVD per block 



Sparse Denoising 

● Uniform noise is incompressible and OMP will reject it 

● KSVD can train a denoising dictionary from noisy image blocks 

Source Result 30.829dB Noisy image  

20



Sparse Inpainting 

● Missing values in 𝐱 means missing rows in 𝐃 

● Remove these rows and refit α to recover 𝐱 
● If 𝛼 was sparse enough, the recovery will be perfect  

= 



Sparse Inpainting 

  Original          80% missing Result 



Super Resolution 



Super Resolution 

The Original               Bicubic Interpolation              SR result  



Block compression of Voxel grids 

● “A Compression Domain output-sensitive volume rendering architecture 
based on sparse representation of voxel blocks” Gobbetti, Guitian and 
Marton [2012] 

 

● COVRA sparsely represents each voxel block as a dictionary of 8x8x8 
blocks and three coefficients 

 

● The voxel patch is reconstructed only inside the GPU shader so voxels are 
decompressed just-in-time 

 

● Huge bandwidth improvements, larger models and faster rendering 

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2012:CCO'
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